Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int Immunopharmacol ; 118: 110055, 2023 May.
Article in English | MEDLINE | ID: covidwho-2272257

ABSTRACT

The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Lymphocytes , Homeostasis , Thymosin/therapeutic use
2.
J Inflamm Res ; 14: 2993-3013, 2021.
Article in English | MEDLINE | ID: covidwho-1315919

ABSTRACT

The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 (COVID-19) around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.

3.
Clin Chem Lab Med ; 59(3): 599-607, 2021 02 23.
Article in English | MEDLINE | ID: covidwho-1067439

ABSTRACT

OBJECTIVES: Severe coronavirus disease 2019 (COVID-19) is associated with a dysregulated immune state. While research has focused on the hyperinflammation, little research has been performed on the compensatory anti-inflammatory response. The aim of this study was to evaluate the anti-inflammatory cytokine response to COVID-19, by assessing interleukin-10 (IL-10) and IL-10/lymphocyte count ratio and their association with outcomes. METHODS: Adult patients presenting to the emergency department (ED) with laboratory-confirmed COVID-19 were recruited. The primary endpoint was maximum COVID-19 severity within 30 days of index ED visit. RESULTS: A total of 52 COVID-19 patients were enrolled. IL-10 and IL-10/lymphocyte count were significantly higher in patients with severe disease (p<0.05), as well as in those who developed severe acute kidney injury (AKI) and new positive bacterial cultures (all p≤0.01). In multivariable analysis, a one-unit increase in IL-10 and IL-10/lymphocyte count were associated with 42% (p=0.031) and 32% (p=0.013) increased odds, respectively, of severe COVID-19. When standardized to a one-unit standard deviations scale, an increase in the IL-10 was a stronger predictor of maximum 30-day severity and severe AKI than increases in IL-6 or IL-8. CONCLUSIONS: The hyperinflammatory response to COVID-19 is accompanied by a simultaneous anti-inflammatory response, which is associated with poor outcomes and may increase the risk of new positive bacterial cultures. IL-10 and IL-10/lymphocyte count at ED presentation were independent predictors of COVID-19 severity. Moreover, elevated IL-10 was more strongly associated with outcomes than pro-inflammatory IL-6 or IL-8. The anti-inflammatory response in COVID-19 requires further investigation to enable more precise immunomodulatory therapy against SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , Interleukin-10/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/complications , Acute Kidney Injury/diagnosis , Adult , Aged , Bacterial Infections/blood , Bacterial Infections/complications , Bacterial Infections/diagnosis , COVID-19/blood , COVID-19/complications , Cohort Studies , Emergency Service, Hospital , Female , Hospitalization , Humans , Interleukin-10/blood , Lymphocyte Count , Male , Middle Aged , Prognosis
4.
Brain Sci ; 10(9)2020 Sep 06.
Article in English | MEDLINE | ID: covidwho-750714

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder brought about due to dopaminergic neuronal cell loss in the midbrain substantia nigra pars compacta region. PD presents most commonly in older adults and is a disorder of both motor and nonmotor dysfunction. The novel SARS-CoV-2 virus is responsible for the recent COVID-19 pandemic, and older individuals, those with preexisting medical conditions, or both have an increased risk of developing COVID-19 with more severe outcomes. People-with-Parkinson's (PwP) of advanced age can have both immune and autonomic nervous problems that potentially lead to pre-existing pulmonary dysfunction and higher infection risk, increasing the probability of contracting COVID-19. A lifestyle change involving moderate-intensity exercise has the potential to protect against SARS-CoV-2 through strengthening the immune system. In addition to a potential protective measure against SARS-CoV-2, exercise has been shown to improve quality-of-life (QoL) in PD patients. Recent studies provide evidence of exercise as both neuroprotective and neuroplastic. This article is a literature review investigating the role exercise plays in modifying the immune system, improving health outcomes in PwP, and potentially acting as a protective measure against SARS-Cov-2 infection. We conclude that exercise, when correctly performed, improves QoL and outcomes in PwP, and that the enhanced immune response from moderate-intensity exercise could potentially offer additional protection against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL